NINE MATHEMATICAL STRATEGIES!

NINE MATHEMATICAL STRATEGIES!

Read the problem aloud. What is it asking you?

Draw or build the problem.

Represent the ideas visually or physically.

Find a new or different approach.

Think outside the box!

Reflect on WHY?

Why does this work? What mathematical processes are involved?

Is this similar to or connected to something you have already learned?

Change the problem.

Would it help to try different numbers, or add onto a shape to see things more clearly?

Try a smaller case.

If the process is not clear with large numbers or numbers of variables, try the same idea with a simpler case.

Look for patterns and connections.

Can you see a pattern?

Or a connection to something else you have learned?

Make a

Propose new ideas.

What would you like to investigate and test out?

Become a skeptic.

When others propose ideas, be skeptical.

Ask: Why did you choose that approach? How does it work?

Prove it to us!